Running CUDA workloads¶
If you want to run CUDA workloads on the K3s container you need to customize the container.
CUDA workloads require the NVIDIA Container Runtime, so containerd needs to be configured to use this runtime.
The K3s container itself also needs to run with this runtime.
If you are using Docker you can install the NVIDIA Container Toolkit.
Building a customized K3s image¶
To get the NVIDIA container runtime in the K3s image you need to build your own K3s image.
The native K3s image is based on Alpine but the NVIDIA container runtime is not supported on Alpine yet.
To get around this we need to build the image with a supported base image.
Dockerfile¶
ARG K3S_TAG="v1.28.8-k3s1"
ARG CUDA_TAG="12.4.1-base-ubuntu22.04"
FROM rancher/k3s:$K3S_TAG as k3s
FROM nvcr.io/nvidia/cuda:$CUDA_TAG
# Install the NVIDIA container toolkit
RUN apt-get update && apt-get install -y curl \
&& curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
tee /etc/apt/sources.list.d/nvidia-container-toolkit.list \
&& apt-get update && apt-get install -y nvidia-container-toolkit \
&& nvidia-ctk runtime configure --runtime=containerd
COPY --from=k3s / / --exclude=/bin
COPY --from=k3s /bin /bin
# Deploy the nvidia driver plugin on startup
COPY device-plugin-daemonset.yaml /var/lib/rancher/k3s/server/manifests/nvidia-device-plugin-daemonset.yaml
VOLUME /var/lib/kubelet
VOLUME /var/lib/rancher/k3s
VOLUME /var/lib/cni
VOLUME /var/log
ENV PATH="$PATH:/bin/aux"
ENTRYPOINT ["/bin/k3s"]
CMD ["agent"]
This Dockerfile is based on the K3s Dockerfile The following changes are applied:
- Change the base images to nvidia/cuda:12.4.1-base-ubuntu22.04 so the NVIDIA Container Toolkit can be installed. The version of
cuda:xx.x.x
must match the one you’re planning to use. - Add a manifest for the NVIDIA driver plugin for Kubernetes with an added RuntimeClass definition. See k3s documentation.
The NVIDIA device plugin¶
To enable NVIDIA GPU support on Kubernetes you also need to install the NVIDIA device plugin. The device plugin is a daemonset and allows you to automatically:
- Expose the number of GPUs on each nodes of your cluster
- Keep track of the health of your GPUs
- Run GPU enabled containers in your Kubernetes cluster.
apiVersion: node.k8s.io/v1
kind: RuntimeClass
metadata:
name: nvidia
handler: nvidia
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: nvidia-device-plugin-daemonset
namespace: kube-system
spec:
selector:
matchLabels:
name: nvidia-device-plugin-ds
updateStrategy:
type: RollingUpdate
template:
metadata:
labels:
name: nvidia-device-plugin-ds
spec:
runtimeClassName: nvidia # Explicitly request the runtime
tolerations:
- key: nvidia.com/gpu
operator: Exists
effect: NoSchedule
# Mark this pod as a critical add-on; when enabled, the critical add-on
# scheduler reserves resources for critical add-on pods so that they can
# be rescheduled after a failure.
# See https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/
priorityClassName: "system-node-critical"
containers:
- image: nvcr.io/nvidia/k8s-device-plugin:v0.15.0-rc.2
name: nvidia-device-plugin-ctr
env:
- name: FAIL_ON_INIT_ERROR
value: "false"
securityContext:
allowPrivilegeEscalation: false
capabilities:
drop: ["ALL"]
volumeMounts:
- name: device-plugin
mountPath: /var/lib/kubelet/device-plugins
volumes:
- name: device-plugin
hostPath:
path: /var/lib/kubelet/device-plugins
Two modifications have been made to the original NVIDIA daemonset:
-
Added RuntimeClass definition to the YAML frontmatter.
apiVersion: node.k8s.io/v1 kind: RuntimeClass metadata: name: nvidia handler: nvidia
-
Added
runtimeClassName: nvidia
to the Pod spec.
Note: you must explicitly add runtimeClassName: nvidia
to all your Pod specs to use the GPU. See k3s documentation.
Build the K3s image¶
To build the custom image we need to build K3s because we need the generated output.
Put the following files in a directory:
The build.sh
script is configured using exports & defaults to v1.28.8+k3s1
. Please set at least the IMAGE_REGISTRY
variable! The script performs the following steps builds the custom K3s image including the nvidia drivers.
#!/bin/bash
set -euxo pipefail
K3S_TAG=${K3S_TAG:="v1.28.8-k3s1"} # replace + with -, if needed
CUDA_TAG=${CUDA_TAG:="12.4.1-base-ubuntu22.04"}
IMAGE_REGISTRY=${IMAGE_REGISTRY:="MY_REGISTRY"}
IMAGE_REPOSITORY=${IMAGE_REPOSITORY:="rancher/k3s"}
IMAGE_TAG="$K3S_TAG-cuda-$CUDA_TAG"
IMAGE=${IMAGE:="$IMAGE_REGISTRY/$IMAGE_REPOSITORY:$IMAGE_TAG"}
echo "IMAGE=$IMAGE"
docker build \
--build-arg K3S_TAG=$K3S_TAG \
--build-arg CUDA_TAG=$CUDA_TAG \
-t $IMAGE .
docker push $IMAGE
echo "Done!"
Run and test the custom image with k3d¶
You can use the image with k3d:
k3d cluster create gputest --image=$IMAGE --gpus=1
Deploy a test pod:
kubectl apply -f cuda-vector-add.yaml
kubectl logs cuda-vector-add
This should output something like the following:
$ kubectl logs cuda-vector-add
[Vector addition of 50000 elements]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads
Copy output data from the CUDA device to the host memory
Test PASSED
Done
If the cuda-vector-add
pod is stuck in Pending
state, probably the device-driver daemonset didn’t get deployed correctly from the auto-deploy manifests. In that case, you can apply it manually via kubectl apply -f device-plugin-daemonset.yaml
.
Acknowledgements¶
Most of the information in this article was obtained from various sources: